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THEORY OF THOMSON SCATTERING FROM A WEAKLY IONIZED PLASMA*
by Richard G. Seasholtz

Lewis Research Center

SUMMARY

The theory of Thomson scattering from a weakly ionized plasma is extended to in-
clude the effects of unequal electron and ion temperatures, a constant magnetic field, and
electron drift. The Born scattering formula and the fluctuation-dissipation theorem are
used to calculate the differential backscattering cross section. The plasma is described
by the hydrodynamic (continuum) equations for the conservation of mass, momentum, and
energy of each species. Included are electron-neutral and ion-neutral collisions but not
collisions between charged particles. The results given are valid if the wavelength of the
probing wave is greater than the ion-neutral mean free path. With no magnetic field the
backscattered power is shown to be generally less than that found from a collisionless
calculation and to be dependent on the ion-neutral and electron-neutral collision frequen-
cies when the electron to ion temperature ratio Te/Ti does not equal 1. A magnetic
field normal to the incident wave causes the backscattered power to be increased for
Te/Ti in the common experimental range of 1to 10; it is shown that the scattered power
may increase with Te/Ti rather than falling off in accord with the usual (1 + Te/Ti)'1
relation. The effect of electron drift (less than the critical velocity corresponding to the
onset of instability) on the Thomson scattering spectrum and on the total scattered power
is calculated. As the electron drift velocity is increased, the spectrum develops a sharp
peak at a frequency shift corresponding to the ion acoustic wave, and the total scattered
power is enhanced.

INTRODUCTION

An important new technique of plasma diagnostics is based on Thomson, or incoher-
ent, scattering of electromagnetic radiation. Although originally applied to the study of

b 3
Based, in part, on a dissertation submitted to Case Western Reserve University in
partial fulfillment of the requirements for the degree of doctor of philosophy in January
1970. The work was partially supported by the National Science Foundation,



the ionosphere (refs. 1to 6), Thomson scattering measurements have also been used in
the diagnosis of laboratory plasmas using high power lasers as the radiation source
(e.g., ref. 7). The measurement of the Thomson scattered light of a pulsed ruby laser
has been suggested (ref. 8) as a method of studying re-entry plasmas. Other possible
applications of Thomson scattering of laser light include measurements in rocket exhaust
and explosion generated plasmas.

Thomson scattering measurements offer the important potential advantage of being
able to measure many quantities of interest, such as electron and ion densities, temper-
atures, drift velocities, and even velocity distributions at a specific interior point in the
plasma. Techniques that involve the insertion of physical probes (e.g., Langmuir
probes) into the plasma offer much less spatial resolution and can disturb the plasma,
Other radiation based diagnostic methods either measure what leaks out of the plasma,
as with spectroscopic methods, or measure an average value along a path through the
plasma as with microwave and laser interferometry techniques.

Thomson scattering measurements were first used in studies of the ionosphere. In
1958, Gordon (ref. 1) suggested that, if a beam of radio waves with a frequency well
above the plasma cutoff frequency were sent into the ionosphere, the radiation scattered
by the free electrons could be detected. Analysis of the spectrum and scattered power
could provide information about the electron density and temperature. He noted that this
measurement could be made above, as well as below, the altitude of maximum electron
density. In his calculation he assumed that the electrons were in random thermal motion
similar to neutral particles. He predicted that the scattered signal should have a spec-
tral width corresponding to the thermal velocity of the electrons since their motion would
cause the scattered signal to be Doppler shifted with respect to the incident wave,

Shortly after Gordon's initial work, Bowles (ref. 2) successfully observed this phe-
nomenon using high power radar. The scattered power agreed with that predicted by
Gordon; however, Bowles was not able to observe the broadening of the spectrum that
had been calculated. He explained this discrepancy by modifying the theory to include
the electrostatic interaction between the electrons and ions and concluded that the spec-
tral width should correspond to the ion, rather than to the electron thermal velocity.

With the observations of Bowles as a stimulus many workers attacked the problem
theoretically. The early work was done by Dougherty and Farley (ref. 3), Salpeter
(refs. 9 and 10), and Fejer (ref. 11), who dealt primarily with plasmas in thermal equi-
librium. More recent works by Salpeter (ref. 12), Rosenbluth and Rostoker (ref. 13),
Buneman (ref. 14), and Farley (ref. 6) have extended the theory to include unequal elec-
tron and ion temperatures. All this work has been based on kinetic theory calculations.

Cohen (ref. 15) took a somewhat different approach and used very simple two-fluid
collisionless hydrodynamic (continuum) equations to calculate the Thomson scattering
spectrum. His continuum theory disagreed with the kinetic theory calculations in that
the spectrum he obtained consisted of only sharp spikes since the broadening effect of
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Landau damping was not included. A more complete continuum theory based on both two
and three fluid models was given by Tanenbaum (ref. 16) for equal electron and ion tem-
peratures. His calculations included collisions between the charged particles and the
neutrals and gave results that agreed very well with the calculations of Dougherty and
Farley (ref. 5) who had included collisions in their kinetic theory.

The advantages of the continuum theories over the kinetic theories are that they are
inherently simpler and collisional effects are easily included. Indeed, the continuum
theories are only valid when the mean free path is less than the characteristic length of
the probing wave and the collisional damping outweighs the Landau damping.

In this report the continuum theory of Thomson scattering is extended to include
scattering from plasmas with unequal electron and ion temperatures, a constant magnetic
field, and electron drift. Electron-neuiral and ion-neutral collisions are included in the
theory but collisions between charged particles are neglected. Thus the theory is not ap-
plicable to plasmas with very low electron temperatures where electron-ion collisions
become dominant. The method used follows that of reference 3 (also see ref. 17), which
used the Born scattering formula and the fluctuation-dissipation theorem which gives the
spectrum of the fluctuations of a linear system in thermal equilibrium. The new results
presented herein make it possible to analyze Thomson scattering experiments in the
lower ionosphere and in other weakly ionized plasmas where collisional effects are im-
portant and where kinetic theory calculations have not yet been made. Furthermore, in
those cases where kinetic theory calculations have been made and where the continuum
theory is also valid, the continuum theory has the advantage of being easier to apply.

GENERAL THEORY

The phenomenon of Thomson scattering in a plasma is dependent on fluctuations in
the number density of the electrons. If the electrons were stationary and randomly dis-
tributed, the total scattered power would be zero; however, because of the thermal
motion of the electrons, fluctuations in the electron number density do exit. Further-
more, when the Debye length is less than the wavelength of the probing wave, collective
plasma effects come into play and the fluctuations of the ions influence the electron fluc-
tuations. The scattering may be thought of as an interaction between the incident wave,

with wave vector }50 and a thermally excited wave in the plasma. The scattered wave,

b
with wave vector gs’ is related to k, by ks =k, +k (as shown in fig. 1) where k is
the wave vector of the spatial Fourier component of the electron number density fluctua-

tions that causes the scattering.



Figure 1. - Relation between wave vectors of incident, scattering,
and scattered waves.

Thomson Scattering Cross Section

It can be shown (ref. 18) that the differential scattering cross section for a medium

with a fluctuating dielectric constant is

4 3 .2
k™ L* sin® p
o, (w, - @) dw =~___<Ae(—k w) 2>dw (1)
° 2 2
(4m)

where o is the power scattered per unit solid angle per unit volume per unit frequency
per unit incident power. (All symbols are defined in appendix A.) In this formula @,
and ko are the angular frequency and wave number of the incident wave, p is the angle
between the electric vector of the incident wave and the direction of propagation of the
scattered wave, w is the deviation of the frequency of the scattered wave from the inci-
dent wave, and k is the wave vector of the scattering wave (k = —2k for backscattering).
Also, <[Ae(w ’ > is the power spectrum of the fluctuating part of the perm1tt1v1ty A€ and
is defined as the Fourier transform of the auto correlation fluctuation of Ae; that is,

/ <’Ae(-}5,w)’2> 9T gy = @Be* (K, DA€ (&t + 7) (2)

where the angular brackets on the right hand side denote a time average. Note that the
k dependence of Ae arises because Ae¢ has been expanded in a Fourier series in a box
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of sides L, where L has been taken to be much larger than the scattering volume.
To calculate Ae, recall that for transverse electromagnetic waves in a plasma with

1/2
oY

plasma frequency We = (NO ez/rnee the dispersion relation may be written as

22_ 2 2
o] o} e (3)

provided W, is much greater than the electron collision and cyclotron frequencies
(ref. 19). Using this dispersion relation for the plasma and noting that kg = UOE(};",‘J) wg,
the scattering cross section becomes

2

o sinzp <lAN(-§, w)]2> dw 4)

3
0wy - w) dw = Lr

where AN is the fluctuating part of the electron number density and ry = e2/477 eornec2
is the classical electron radius. Thus only the electron density fluctuations cause

scattering.

Fluctuation-Dissipation Theorem

To use equation (4) the power spectrum of the fluctuations of the electron number
density must be found. A form of the fluctuation-dissipation theorem due to Callen,
Barasch, and Jackson (ref. 20), who generalized the original form of the theorem of
Nyquist (ref. 21) to any linear system in thermal equilibrium is used. This theorem has
previously been used by Farley, Dougherty, and Barron (ref. 4) to calculate Thomson
scattering in a collisionless plasma. For a system in thermal equilibrium, the theorem
may be stated as follows.

Suppose that a set of generalized forces Vi(t) are applied to the system. The system
responses are represented by Ii(t) where the spectral components of Vi and Ii are re-
lated by

L(w) = 2. Y5(w) Vi(w) (5)
J

and where Yij is a generalized admittance tensor. The rate of change of energy of the
system is

W >V L (6)
dt i



For high temperatures (or low frequencies) where T >> hw. the fluctuation-dissipation
theorem may be stated as

(1) L) [y do = g (Yi*]. + ;) do (1)

where the spectral function on the left hand side is defined by

/ (,Ii(w) I].(w)D 9T dw = <11‘(t) L t + 7‘)> (8)

that is, <[I (w) I (w) [) is the Fourier transform of the cross correlation function of the
fluctuating quant1t1es I (t) and I (t). (For high frequencies where hw > «T, eq. (7) must
be modified to include quantum effects by replacing xT with 1/2 Hw coth (Aw/2kT); e.g.,
for T =300 K this change must be made if w > 4><1013 rad/sec.)

The fluctuation-dissipation theorem is applied to a specific system which is in equi-
librium by choosing the Ii to correspond to the desired macroscopic variable. The rela-
tion for the rate of change of energy of the system is then used to identify the quantities
that correspond to the Vi' Finally, the equations of motion of the system are examined
to find the proper admittance tensor Yi' that relates the Ii and the Vi' The fluctuation-
dissipation theorem may then be applied to determine the fluctuations of the quantity cor-
responding to the Ii' The fluctuations of the I, may also be thought of as arising from
fluctuations of stochastic forces Vi' The fluctuation-dissipation theorem may then be

alternatively written as

(Vi(@) V() ]>dw - 1"31 + Y5 do 9)

A simple example is to find the voltage fluctuations across a resistor R at tempera-
ture T. The system is one dimensional, so the admittance tensor reduces to one element

of value 1/R, and the fluctuation-dissipation theorem gives the power spectrum of the
voltage fluctuations

(V(@)]?) do = L R aw (10)

T

Note that since we allow w to take on both positive and negative values, this expression
is 1/2 times the standard form of Nyquist's theorem.



EFFECT OF COLLISIONS ON THOMSON SCATTERING WITH UNEQUAL
ELECTRON AND ION TEMPERATURES (B = 0)

The first case that is examined is the scattering of electromagnetic waves from elec-
tron density fluctuations in a weakly ionized plasma with no magnetic field. Dougherty
and Farley (ref. 5) have shown that for equal electron and ion temperatures, collisions do
not affect the total backscattered power. Here it is shown that when the electrons and
ions are not at the same temperature, the total backscattered power is dependent on the
ion-neutral and electron-neutral collision frequencies.

Farley (ref. 6) has calculated the scattering cross section for unequal electron and
ion temperatures, but only for the collisionless case. Here it is found that for
Te/Ti > 10, the total scattering cross section is substantially less than that of the colli-
sionless calculation, but always greater than a cross section that varies with T e/ Ti as
1+ (Te/Ti)]—l. As the collision frequencies v, and v, increase, the total scattered
power approaches the (1 + Te/Ti)-l curve, although it does not reach it even in the limit
Vens Yip —~ - Also, for Te/Ti > 5, the ratio of the collision frequencies Ven/yin’ with
Yin fixed, has a large effect on the total scattered power, although the shape of the
spectrum is essentially unchanged.

Evaluation of Backscattering Cross Section With

Unequal Electron and lon Temperatures
The backscattering cross section, from equation (4), is
gb(wo - w) dw = Lsri <[AN(2,1§JO,0)) [2) dw (11)

so the scattering may be thought of as being an interaction between the incident wave,

which is taken to be proportional to ei(wot"koz)

, and the spatial Fourier component of the
fluctuating part of the electron number density AN whose wave vector is 2}50. (In the
remainder of this report only backscattering is treated; however, the theory may easily
be extended to other scattering angles by using equation (4) in place of equation (11) with
k =k -k, The magnitude of k is then given by k| = 2k | sin 6/2 where ¢ is the
angle between k  and k_.)

To calculate the thermal fluctuations of the electrons, a weakly ionized plasma is
considered in which the electrons and ions each have Maxwellian distributions but not nec-
essarily at the same temperature. It is assumed that the temperature of the neutrals and

ions are equal. Because of the large difference between the electron and neutral masses,

7



the electrons tend to exchange energy slowly with the heavy particles so that each species
may achieve a Maxwellian distribution, but at different temperatures. In order that this
temperature difference may be sustained under steady-state conditions, it is hypothesized
that some external energy source, such as a constant electric field, is acting on the
plasma.

The model used for the plasma is that of two fluids of charged particles, the electrons
and ions, each of which is coupled to the neutral particles by collisions and which interact
because of the self-consistent electric field. Short range electron-ion collisions are
neglected.

The fluctuations of the electrons and ions are calculated separately by applying the
fluctuation-dissipation theorem to fictitious sets of particles that are identical to the real
electrons and ions except that no forces due to the electric field are included. The actual
fluctuations on the electron number density are then found by using Maxwell's equations
to include the interaction between the electrons and ions due to the self-consistent elec-
tric field.

In order to calculate the response function of each fictitious fluid, a longitudinal oscil -
lating force E is applied to the s species (s takes on the value e for electrons and
i for ions). The rate of change of energy of the s species in a volume L3 is

= =L°F, - L, (12)

where I'o = ngs is the flux density of the s species. With no applied magnetic field,
the response T’ 1is in the same direction as the applied force FEg, so the vector notation
can be dropped. A scalar admittance function Y S is introduced that relates the response
to the applied force:

=Y FS (13)
(Application of the fluctuation-dissipation theorem to a system with a tensor response
function is treated in appendix B.) These admittance functions will be obtained from the
equations of motion of each set of fictitious particles.

To apply the fluctuation-dissipation theorem, identify Fg with V and then, com-

paring equations (6) and (12), note that the response 1 must be identified with L3PS and
Y with YSLS. The fluctuation-dissipation theorem (eqs. (7) and (9)) may thus be written

in either of the forms

(l | >dw—.—-— Re Y dw (14)
Lr




or

T
IF._ %) dw = —5 Re L do (15)
(I 3 Y

L7 s

The quantities Fe and Fi may be considered to be stochastic forces that act on the
electrons and ions, respectively.

The self-consistent electric field, given by Maxwell's equations, will be an additional
force that acts on the charged particles. The Maxwell equation

VXH= +d (16)

# kS

is used. Here V XH =0, since only longitudinal oscillations cause fluctuations in the
electron number density.
Equation (16) may be expressed in terms of the flux densities as

I‘e - I‘i = YI(eE) (17)
where
€
Y = iw = (18)
0>
ea

With the inclusion of the force due to the electric field, the equations for the electron and
ions become

T, =Y (F, - eE)
(19)
T, = Y{(F, + eE)

These two equations together with equation (17) form a closed set of equations for the

electron and ion flux densities that can be solved once we know F Fi’ Y _, and Yi'

e’ e’

Solving equations (17) and (19) for ', gives

. FY (Y + Yp) + FY Y,

o : (20)
Ye+Yi +Y

I

Assuming that the stochastic forces on the electrons and ions are independent, that
is, that <’Fe(w) F;(w) D = 0, the power spectrum of T’ is



2

2

2 Y (Y, + Yy 2 Y, 2
T dw = |e——— e F F. d 21
{ (@) I%) do Yo+ Y, +Y; ([Fe@] )t Y, + Y <’ (%)) do 2D

Using equation (15) for <, F e , 2) and < |Fi ]2> and the continuity equation for the electrons

AN, v. T =0 (22)

ot ~e

yields the power spectrum of the electron numbeér density fluctuations

2
2 KT, | Y (Y, +Y Y, T, Y
<]AN(k,w)f2>dw=1.§._K e l i+ AI) Re[—& + 1 ' \do (23

o a3 [Ye+ ¥y + ¥y v 2 Te |y, +v;)2

To this point the analysis is essentially that of Farley (ref. 6) who then calculated the
admittance functions for a collisionless plasma. Here Farley's work is extended by cal-
culating the Y e and Yi when collisions are important. For this purpose the approach
of Tanenbaum (ref. 16) is followed and use is made of the transport equations for mass,
momentum, and energy with the heat flow term and pressure tensor as derived by
Goldman and Sirovich (ref. 22). Applying these equations to small amplitude disturbances
in a weakly ionized gas with neutral velocity u, = 0 gives (to first order in the fluctuating
quantities)

p

S
——+pSOV- E’S:O (24a)
ot

u. Vp., F Ui

8L 838 _|v2y +-1V(V'g)———os=—v u (24b)

ot o m ~s 3 S D sn~s

SO S S0
s 5 Pso Ps _ ZAOS v2 T = -Nok vgp (Tg - Tgo) (24c)

ot 3psoat

The energy equations imply that there is some external force that causes the electron and
ion temperatures to be different under steady-~state conditions. The temperatures of the
ions and neutrals are assumed to be equal. Note that s takes values e (for electrons)
and i (for ions) and that n denotes neutrals. Also, pgs dg» Mg, Py, and T, are the
mass density, charge, mass, pressure, and temperature, respectively, for species s;
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gs is the force whose response we are calculating; Ysn and Vén = ZmS vsn/(mS + mn)
are, respectively, the effective collision frequencies for momentum and energy transfer
with the neutrals; and Mog 2nd Aos? the viscosity and thermal conductivity for charged

particles in a weakly ionized gas, are given by

Py

Tos = 5 (252)
S

Z}Sl’l

15 KPg

by = —_——
oS
4InSCS VSl’l

(25b)

where Ds and C g are constants (of order 1 or 2) that depend on the interparticle force
law and the mass ratio between the electrons or ions and neutrals.

It is assumed that p, = p  + p;, Py =Py + pé, and T, =T, + T&'} with the fluctua-
tion quantities p's, ps';’ and Té proportional to el{wt-kz) “gince longitudinal disturbances
have been specified, F_ and u, are in the z direction.

Using the mass and energy equations allows the momentum transport equations to be
written in the following form:

iwN_ F
22 (26)

Nous = . "
k KTS S

where

2 = A + 26 [, +2(3Dw )" 1] 202 (27)

1+i ﬁ)-

3ch
As:”‘——" {28a)

1+1 (¥

Os

5k2KTS
.=V

L
s~ Yan
2Cg VgpMg

(28b)

and bg and lps are the normalized Doppler shift frequencies and collision frequencies

11



04 = ©w S (292a)
k 2KTS
vsn mS 1/2

Y =2 (290)
k ZKTS

Comparison of equations (26) and (13) shows that the admittance functions for the

electrons and ions considered separately are

iwN

_ o 1
Ye© 2z
k KTe e
and
iwN
Y, =—2 1 (30)
k2T, %

Thus the power spectrum of the electron density fluctuations (eq. (23)) may be expressed
in terms of the macroscopic parameters of the plasma and the differential backscattering

cross section (eq. (11)) may be written as

2 2
2| pa” + 2z, 2 Z. de
ob(wo - w)dw = N,re L Im |z + ¢ _?1_.__ -—_:,: (31)
o (z; + pzy) + 2,25 Hpo® sz |”

where py = Te/Ti and « = (kAD)—l, with the electron Debye length, Apy, equal to
(KTeeo/Noez) 1/2, This is essentially the same expression, with slightly different
notation as Farley's (ref. 6). However, the z, and zZ; used here have been derived
from continuum equations rather than from the kinetic equations Farley used.
Examination of equations (27) and (292) shows that z;‘ (w) = zs(-w). Any function
F(ze, Zi) with constant real coefficients also has this property, that is, F*(w) = F(-w).
1t follows that fF(w) [2 is an even function of «w and that ImF(«) is an odd function of <.
Hence the differential scattering cross section (eq. (31)) is an even function of «.
For the case of equal electron and ion temperatures, the cross section simplifies to

12



2
o + z,
ob(wo - w)dw = —Norg3 Im ! dow (32)

mw

2
e’ (zi + Ze) + 2 2
Provided that the ion-neutral mean free path is less than the incident wavelength, equa-
tion (32) gives results (Tanenbaum, ref. 16) that agree very well with those obtained by
Dougherty and Farley (ref. 5) using the Boltzmann equation with the Bhatnagar-Gross -

Krook (BGK) model for collisions with neutrals.

Numerical Results

The normalized differential cross section, as obtained from equation (31), is eval-
uated for four values of (Te/Ti) in figure 2 with « = 12.7 and m, = 31 amu (this value of
m. is chosen to represent a mixture of NO' and 05 ions). Note that a typical Thomson

i
scatter spectrum (ref. 3) has a peak at w = kUp (where Up is the plasma sound speed)

Electron to ior.
L451— temperaiure
rdtio,
T

1

Normalized Thomson scattering cross section, (ﬂliz,’Norg) a,

0 .5 1.0 L5 20 25 30 35 40
Normalized Doppler shift frequency, 6; = (w/k)(miIZKTi)”2

Figure 2. - Thomson scattering cross section as function of
Doppler shift frequency. a = 12,7; normalized ion-neutral
collision frequency, llli, 1; normalized electron-neutral
collision frequency, e 0.1; ion mass, m;, 31 atomic mass
units; Ci = Di =2 Ce = De =1

13



which is due to scattering from the so-called ion acoustic waves in the plasma. In addi-
tion, the peak is sharp when there is little damping of the ion acoustic waves, but
broadens and eventually disappears when the damping increases. Increasing the electron
to ion temperature ratio causes the plasma sound speed to increase and the damping of
ion acoustic waves due to collisions to decrease. This broadens the spectrum and in-
creases the relative amplitude of the resonance, as can be seen in figure 2. The shape

of the spectrum is essentially unaffected by a change in ¥ e/ zpi although the total power

is changed. This is shown in figure 3 where the spectrum (normalized so that cb(wo) =1)
is plotted for two values of d/e/ Y.

Electron to ion

collision
frequency
30 ratio,
Veldi
25k Lo Belt = (VgpluipNmgT,m T )12

2.0

1.5

1.0

Differential cross section ratio, ay(wy, + whoylw)

I I | | | | ] I —|
.5 L0 L5 20 25 30 35 40 45 50

Normalized Doppler shift frequency, 8; = (wlk)(miIZKTi)llz

<

Figure 3. - Comparison of spectral shape for two values of normalized electron to fon
collision frequency ratio, a= 12.7; normalized ion-neutral collision frequency,
¥;, 1; electron to jon temperature ratio, To/T;, 10; fon mass, m;, 31 atomic mass
units; Ci = D|‘ =% Ce = De =1

Discussion of Total Power

The total backscattered power is given by

Otot = / ob(wo - w) dw (34)

Although this integral may easily be calculated numerically (see fig. 5). an approximate
analytic form can be derived that is valid for o >> 1, p <10, and Y, > 1. Equation

(34) may be written using equation (31) as
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where
zZ
gl=ad® & (35b)
2
(o +ze)

The first integral in equation (35) is easily evaluated using residue theory to find the
Cauchy principal value, which is just given by —7r1 X (Residue at w = 0) since there are no
poles in the lower half plane. Since Zg l a” +z [2 may be approximated by
(a + 1) , and the second integral can be evaluated in the same manner as the first.

Thus equation (35a) becomes

ot _ 1 o! NOEE\ Im(us) do g

2 (1+ a2)[1+ oz2(1+ w] 1+ 0!2)2 !Zi+MB'[2 e

2
Nore 1+ o

If Z, = 1, the remaining integral gives zero contribution, and the total cross section
is given by the first two terms in equation (36). This is equivalent to Farley's approxi-
mate solution (ref. 6) and gives the identical result. This expression is also given by
Salpeter (ref. 12) and Buneman (ref. 14). Note that there is no dependence on the colli-
sion frequencies in this approximation.

The case of the limit « — < (Debye length - 0) may be easily evaluated if it is as-

sumed that A s may be approximated by its low-frequency limit

NN (37)
3os

Equations (28) show that the approximation is certainly valid for A e and should be fairly

good for A; when ¥, >1, provided p is not too large, since the main contribution to
the total power then comes from the region g; < 1 (see fig. 2). Using equation (37) al-
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1tows the integral in equation (36) to be evaluated

%ot _ 1 (u-1\_1 (38)
NrZ l+u \w+lI+Q
[0 >
where
v\ /K
LVALS
with
-1
K, = 1+ —2 - +<31pi2 . 4_1(_:5—> (40a)
3D,y i
-1
K =1+_2 —+ (67/27,03 + 4_1C§.> (40b)
3D ¥ e
and
m\ /2
m;

For small Debye length (a@ — =), equation (38) shows that the total backscattered power is
generally less than that calculated from the collisionless theory, but it is always greater
than (1 + u)"l and is dependent on both the electron and ion collision frequencies. This
approximate solution for ll/i = 1 is shown in figure 4 along with (1 + “)—1, the numerical
integration of equation (31) for « >> 1, and the large T e/Ti approximate solution of
Farley (ref. 6) for the collisionless case. For z,l/i > 1 the approximate solution should
be even closer to the exact solution.

Figure 5 shows the total backscattering cross section (obtained by numerical integra-
tion) for three values of 1[/1 and two values of we/wi. For large values of p the total
backscattered power is less than that found from the collisionless theory, and it more
closely follows the (1 + u)'l curve which is commonly used by experimentalists. The
total power approaches the (1 + ,u)'l curve closely as d/i becomes larger, although it
does not equal it in the limit as "Pe and :,Di -0,

It should be pointed out that y e 2 d z,bi are independent of temperature only when
the interparticle force is that of hard spheres (see ref. 23, p. 251). In general, this is
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Figure 5. - Total backscattered power as function of electron to

not the case, and an additional temperature dependence would be introduced if the proper
interaction were known and taken into account. However, this additional temperature
dependence is not important to the calculations presented in this report.

EFFECT OF COLLISIONS ON THOMSON SCATTERING IN A MAGNETIC FIELD

In this section the theory of Thomson scattering is extended to include the effects of
electron-neutral and ion-neutral collisions on the signal scattered from a plasma in a
uniform constant magnetic field.

It has been shown (refs. 4 and 10) that a magnetic field appreciably influences the
Thomson backscattered signal only when the field is normal or nearly normal to the di-
rection of propagation of the probing wave. Farley (ref. 6) has shown that for a collision-
less plasma the total backscattered power is markedly altered by a magnetic field when
the electron temperature T e s not equal to the ion temperature T;. Since, for the case
of no magnetic field, the scattered power has been shown to be dependent on the electron-
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neutral and ion-neutral collision frequencies for Te # Ti’ it is not surprising that in the
calculations presented here the total backscattered power depends on the electron and ion
temperatures, the frequency of collisions, and also the magnitude and relative angle of
the magnetic field.

In the experimentally important range of T e/Ti between 1 and 10, the total back-
scattered power is increased by the magnetic field - an effect also shown in Farley's col-
lisionless calculations. However, increasing the collision frequencies is shown to reduce
the influence of the magnetic field and thus causes the scattered power to be closer to the
field free case. It should be noted that when magnetic-field effects are important, the
total scattering cross section is not proportional to (1 + Te/Ti)'1 as it is (to a good ap-
proximation for small T e/Ti) in the field-free case.

Evaluation of Backscattering Cross Section With Magnetic Field

Providing that the incident frequency is much larger than the electron plasma, colli-
sion, and cyclotron frequencies, the differential backscattering cross section can then
be written as (derived in appendix B)

2

NoTe [, -1 t -1
OFb((")o - w) dw = —2——— [% . (E - E ) - % 77 dw (B14)
e | I~ £

The coordinate system is chosen so that the incident wave vector k  1is alined with the

z axis and the magnetic field go lies in the x-z plane and forms an angle 3 with go
The symbol t denotes the Hermetian conjugate, and | ]zz means that the expression is
the zz component of the tensor. The tensors % and g are defined by

-1

7Z =ge+<u§i'1+§'1> (B15)
-1 -1 -1\-1

E:%"“—u“@%i +%I> (B16)

where g = Te/Ti’ Ze and %i are normalized impedance tensors that characterize the
response of the electrons and ions, respectively, to an applied force proportional to
eWt']kz and %'1 is a tensor (closely related to the usual conductivity tensor) given by

b
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1-n 0 0
%‘1=i2 0 1-n2 o (41)
@ 0 0 1

where n =kc/w. Note that, for equal electron and ion temperatures, B = Z and the
cross section (eq. (B14) is then just proportional to the imaginary part’\éf the zz com-
ponent of g'l.

It is ogly necessary to calculate ge and gi (evaluated at k = 2k0) to find the scat-
tering cross section given by equation (B14). Other authors (refs. 4, 10, and 13) have
used kinetic theory to calculate Thomson scattering when magnetic field effects are im-
portant. In appendix C the continuum equations for a weakly ionized plasma in a constant
magnetic field are used to calculate ge and 51 for the case where electron-neutral and
ion-neutral collisions are important.

An approximation used by other authors (refs. 4 and 10) may be used to simplify the
amount of matrix algebra needed to evaluate the cross section as given by equation (B14).
It is to assume that the phase velocity of any wave which causes scattering is much less
than the velocity of light c¢. To use the approximation, the limit is taken as ¢ ap-
proaches infinity in the evaluation of equation (B14), The result of this is to decouple the
transverse and longitudinal waves. (The longitudinal oscillations are the only ones that
are important here since the scattering is caused by the fluctuations in the electron num-
ber density.) Applying this approximation leads to the following form of the backscatter -
ing cross section

2 -1 2 1 -1 -1 -n-1] d
op(w, - w) dw = Norel('é )zz, Im T = (“,%i + % )ZZ v (42)
(z™Y,, M i
where
- _1\-1 2
14 M (71 gl gl i

Det(%i) XX yy Xy YX)
AR AN Adl Ad

(%_l)zz - XX ¥y Xy ¥X (44)

~ Det(Z)

and the elements of ZN are
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Zyi = 25 + (027 + 231, 0

ij ij zz “iz (45)

6jz
This is equivalent to the cross section used by Farley (ref. 6) for his kinetic theory

calculations.

Cross Section for B = 90°

As discussed previously, the magnetic field affects the backscattering cross section
only when the incident wave is normal or nearly normal to the magnetic field. In this
section the special case of 8 = 90° is examined because at this angle the effect of the
magnetic field is maximized. For other angles the full equations presented in the previ-
ous section can be used if an evaluation of the cross section is desired.

For B = 900, the tensors gs defined by equation (C15) simplify to

X 0 0
gs =10 _YS :I:iAS (46)
0 +1AS Zs

where the upper sign is to be taken for the electrons and the lower sign for the ions. The

iy 0 .
quantities Xy, Vgr Zgo and AS are now defined as

- -
xg = 20, |y + — L |- 262 47)
¥y \2
1 +-=
R s/
. 1 1 2
Vg = 2104 [ g + - 26 (48)
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r ” 7
1 +<fs_>
z. =A_ + 29 |y, + 2 Ys - 262 (49)
s s sl”s 3Ds"bs 5 s
1+4 _S_>
L 11Ds |
(- -
1 1
A =2¢.0, |1 - 5 3 (50)
Dsws 1+4 <¢_S>
! v/ |

The thermal conductivity 1 , given by equation (C14) becomes AOS/[I + (qbs/t,bs)z]
for this special case of 3 = 90°. Note that the effect of a large magnetic field is to re-
duce the thermal conductivity in the direction normal to the field lines. This change in
the definition of Og (and hence As) may be made by replacing the CS
equation (28b) with C_[1 + (</Js/§l/s)2].

Equation (46) may now be used to find %e and gi’ and these in turn may be used to

which appears in

b

evaluate the exact expression for the backscattering cross section by using equations
(B14) to (B16). As in the general case, a simpler expression for the cross section may
be found by using the approximation that the velocity of light is large compared with the
phase velocity of the plasma waves that cause the scattering. With this approximation,
the backscattering cross section for S = 90° becomes

2 ( N
2 % Z;
pa’ + — -
. Z 2 P,
0wy - w) dw = Norg - . Imﬁ _159 + & 1 L dw (51)
z Uz Z 7 I z. [ 7w
P1 Pe P Pi i
\ o
where
AZ
Pg=1l4 —-—rr (52)
2
VsZg = As
and Vg Zgs and As are given by equations (48), (49), and (50).

When the magnetic field approaches 0, AS =0 and PS = 1, thus equation (51) reduces
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to equation (31) developed for the cross section with no magnetic field. Furthermore, for
B=0°( || B,), P, = 1 and hence the magnetic field does not change the scattering cross
section when the magnetic-field lines are parallel to the incident wave vector.

Spectral Magnitude at Zero Doppler Shift for p= 90°

In order to better understand the effect of the magnetic field on the Thomson scatter -
ing spectrum, the magnitude of the spectrum can be evaluated at zero Doppler shift for
B = 90°. The case considered is that where the cyclotron radius of the electrons is much
smaller than both the electron-neutral mean free path and the wavelength of the incident
wave A o but where the ion cyclotron radius is much larger than both the ion-neutral mean
free path and X . Interms of the normalized variables defined by equations (Ce), (CN,
and (C8) these conditions may be expressed by

o2 >> 2, 1
and

2
¢ << v, 1

Furthermore, it is assumed that the electron and ion temperatures are equal and also that
a2 >> 1. Then equation (51) is evaluated in the limit as w —~ 0 to find

2
N1 e, ¢, 4C
O'b(wo) dw = o e el 14+ e + lp + 2 i 1 dG (53)
21 | v, 15

boany g Wy + '
L 4Ciiy

Several observations can be made about the spectrum based on this expression. First,
with we/wi ~ 0.1 and ¥; ~1, ¢ (w,) is primarily a function of ¥ and ¢, (or &
since ¢, = (mi/me)]‘/2 gbi) if ¢, ¢ 2 1. Increasing the magnetic field strength causes
gb(wo) to become larger, which implies a narrowing of the spectrum since the total cross
section is independent of both collisions and the magnetic field for T e = Ty With zero
magnetic field, increasing the collision frequencies causes the spectrum to be narrowed;
however, here, where magnetic field effects are important, increasing the collision fre-
quencies (up to the point where the ion collisions begin to dominate) causes the spectrum
to be broadened. The physical explanation is that, as the electron-neutral collision fre-
quency is increased, the electrons are somewhat freer to move across the field lines
since their spiraling motion is broken up by the collisions; however, as the collision fre-
quency is further increased, the collisions eventually dominate the effect of the field, and
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the spectrum again becomes sharply peaked (as when BO = 0). Also the viscosity effects
on the electron motion disappear for this case. The term involving the thermal conduc-

tivity remains, although the role of a,be is replaced by b Thus, the continuum equa-
tions for the electrons retain their validity even for y, <1, provided that qbi + ybg > 1.
Finally, note that ¢, (w ) is a sensitive function of ¥,/¥;. This differs from the field-
free case (for ozz >> 1) where zl/e/zpi has only a slight effect on the spectrum (refs. 5

and 16).

Numerical Evaluation of Cross Section

In figure 6 equation (51) has been numerically evaluated to show the influence of col-

lisions on the spectrum for B = 90°. The values chosen for the other parameters are
typical of conditions found in the ionosphere at altitudes of about 100 kilometers if the in-

Normalized Thomson scattering cross section, (nuzlrﬁorg)ob
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Figure 6. - Normalized Thomson scatiering cross section
as function of Doppler shift frequency for various values
of normalized ion-neutral collision frequencies
(¥ =(\)in/k)(mi12:<Ti)1’2). Normalized ion cyclotron fre-
quency @;= (eBolkmi)(miIZKTi)UZ, 0.1; angle {p) between
the incident wave vector and the magnetic field, 90°% a =
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cident wavelength 2 o equals 6 meters. As discussed, we see that as 1,1/i increases, the

spectrum is broadened up to about tpi = H. Then as zpi is increased further, the collisions

begin to dominate the magnetic field, and the spectrum begins to peak about the origin.
The effect of the angle $§ on the spectrum is shown in figure 7 for two different col-

lision frequencies. This shows that the magnetic field affects the spectrum only for #

within a few degrees of 90° and that at the higher collision frequencies the relative change

due to the field is less.

Angle between
9.8 — incident wave
vector and
magnetic ficly,
B
3.4 deg

Normalized Thomson scattering cross section, (WI/ZINOrE,)ob

8
= _ _,%\_ " \‘\
A L T R e (R R U R | |
.05 .10 .15 .20 .25 0 .05 .10 15 .20 .25
Normalized Doppler shift frequency, 6; = (w/k)(miIZKTi)”2
(a) Normalized ion -neutral collision frequency, ¢;, 1. (b) Normalized ion-neutral collision frequency, ¢;, 10.
Figure 7. - Normalized Thomson scattering cross section as function of Doppler shift frequency for various values of B. Other

parameters are the same as those in figure 6.

For equal electron and ion temperatures, neither collisions nor magnetic field affects

the total cross section, which for this case is given by reference 4 as

2
Otot = Norg 1o (54)
1+ 2a2

However, when the electron and ion temperatures are not equal, both collisions and
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magnetic field strength influence the total cross section. In figure 8 the effect of a mag-
netic field normal to the incident wave on the total cross section calculated by numerically
integrating equation (51) is shown. This figure points out that in the relatively common
experimental range when Te/Ti is between 1 and 10, the total cross section increases
with Bo‘ Also, for large B field (electron cyclotron radius on the order of, or smaller
than, the wavelength of the incident wave), the total cross section may increase with
Te/Ti rather than falling off in accord with the usual (1 + Te/Ti)'1 relation. Farley
(ref. 6) has published curves for the case of no collisions which show a similar effect of
the magnetic field.

In figure 9 the effect of collisions on the total cross section in the presence of a mag-
netic field (<¢>i =0.1) is shown. For Te/Ti between 1 and 10, the effect of collisions is
to drive the curve of total scattered power toward the field-free case.

The effect of the angle 3 on the total cross section is shown in figure 10. This
again points out the fact that the magnetic field has an appreciable effect on the cross sec-
tion only when the incident wave is nearly normal (8 > 800) to the magnetic field for

Te/Ti < 100.
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Figure 9, - Total baciscattered nower as function of elec-
tron te ion temperature ratio for several values of
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parameters are the same as those in figure 6.

Figure 8, - Total backscattered powcr as function of clec-
tron to ion temperature ratio for eight values of nor-
malized ion cyclotron frequency. Ilormalized ion-
neutral collision frequency, ¥, L; other parameiers
are the same as in figure 6.
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Figure 10. - Total backscattered power as function of
electron to ion temperature ratio for various values of
the angle between the incident wave and the magnetic
field. Normalized ion cyclotron frequency, ¢, 0.1;
normalized ion collision frequency, ¢;, 1. Other
parameters are the same as those in figure 6.

SCATTERING FROM A PLASMA WITH ELECTRON DRIFT

Thomson scattering from a plasma in which the electrons have a net drift velocity
relative to the ions has been discussed by Rosenbluth and Rostoker (ref. 13) for a colli-
sionless plasma. They calculated the scattering for relative drift velocities below the
critical value at which the instability of the ion acoustic wave occurs. They found that,
as the drift velocity approaches the critical velocity at which the instability occurs, the
spectrum develops a peak that becomes infinite as the critical velocity is reached. (The
appearance of this infinity in the spectrum results from a breakdown of the linear theory.)

Here, the work of Rosenbluth and Rostoker is extended to include the effect of colli-
sions, and backscattering is calculated (in the stable regime) using the linearized contin-
uum equations and the fluctuation-dissipation theorem. It is assumed that the electrons
and ions have Maxwellian velocity distributions and, for the sake of simplicity, that the
ions have zero net velocity. Our model is thus a plasma in which the ions and neutral par-
ticles have no net fluid velocity and the electrons, which are assumed to have a Maxwellian
velocity distribution, are drifting in the direction of the incident wave with a velocity be-
low the critical velocity at which the two-stream instabilily occurs. Also, it is assumed
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that the thermal velocity of the electrons is much greater than the drift velocity. In gen-
eral this means that, for drift velocities close to the critical velocity, the electron tem-
perature must be greater than the ion temperature. This seems to be reasonable, since
for many physical situations in which the electrons are drifting with respect to the ions
(e.g., in a gas discharge device) the electrons will be hotter than the ions.

The critical drift velocity is dependent on the electron to ion temperature ratio, the
collision frequencies, and the magnitude and relative angle of the magnetic field. In gen-
eral, the critical velocity is found to be relatively independent of the electron temperature.
With higher collision frequencies (which increase the net damping) larger drift velocities
are required to produce instability. If a magnetic field is present, the critical drift veloc-
ity is smaller if the electrons are drifting perpendicular to the field.

When the wavelength is much smaller than the Debye length, (o << 1), the only
change in the spectrum of the scattered signal is the Doppler shift corresponding to the
electron drift velocity. Furthermore, instabilities will not develop at these short wave-
lengths even for high electron drift velocities since there is essentially no coupling be-
tween the electrons and ions over distances much less than the Debye length.

When the wavelength is much larger than the Debye length (@ >> 1), the differential
backscattering cross section becomes unsymmetric about the frequency of the incident
wave if the electrons have a net drift velocity. The spectrum develops a sharp peak which
corresponds to scattering from the progressively more weakly damped ion acoustic waves
as the drift velocity approaches its critical value.

The total backscattered power is obtained by numerical integration and is greatly en-
hanced as the drift velocity approaches the onset of instability.

Backscatter Cross Section With Electron Drift

The electrons and ions are both assumed to have Maxwellian velocity distributions,
with the electrons having a net fluid velocity Vd in the direction of propagation of the
incident wave. The power spectrum of the components of the stochastic force F - which
may be thought of as driving the fluctuations, is given by equation (B3) in a reference
frame in which the s species has zero net fluid velocity. Thus, in the laboratory refer-
ence frame, the spectrum of F, is Doppler shifted by a frequency kV4 and becomes

kT sz(Ts (

FS(w) FS dw = S z.s._z.s.* d (55)
<’ T (w) ](w)’> w S8 1w kv ji 1)) @

where Z_ is the impedance tensor as measured in the laboratory frame.

S
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This shows that, for scattering from a plasma in which both species of particles have
Maxwellian distributions and are drifting with the same velocity, the scattered signal is
merely Doppler shifted by a frequency equal to ka. It will be shown that this is also the
result for the case where the electrons are drifting through the plasma while the ions re-
main stationary if the wavelength is much smaller than the Debye length.

The fluid velocity of the electrons is now assumed to be the sum of the constant drift
velocity plus a small part proportional to eiwt -ikz; that is

, lwt-ikz

Ue=Vg+4e® (56)
When the transport equations are linearized, with the zero-order terms assumed to add
to zero and the impedance tensor %e solved for in the same manner as done previously,
the form remains identical with that given by equation (C17) or equation (46) except that
the frequency w is replaced by its Doppler shifted value (w - ka). Or, equivalently,
b 18 replaced by (9e - xe) where Xe is the electron drift velocity normalized with re-
spect to the electron thermal velocity; that is,

m, \1/2
Xe = Vd 2 ) (57)

KTe

The differential backscattering cross section may formally be written in the same
form as equation (B14) but with the tensor B now defined as

B-—C gz +L(uzitegr)” (58)

1
fo - Xe B

4N
—i |

in place of equation (B16). The tensors ge and Z. remain of the same form as given by

~

equation (C17) except that, in ~Ze’ g, must be reﬁaced by its Doppler shifted value,

B, - Xa-
e e
The approximate expression for 8 = 90° (eq. (51)) is likewise altered to read

e

2 % 2 Z3
S 5 P,
Pp. 0 Z .
6y (@, - @) dw = N r2 i mJ_—e__e,o i |de
Cy2<Zi+uze>+?ﬁz_i 0o =X Pg 1 ua2+ﬁ e
Pi Pe Pe Pi Pi
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with z./P _ given by equations (49) and (52) but with A, again to be replaced by
(0 - Xo)-

For the case of « — 0 (Debye length — «) the differential cross section (eq. (59))
reduces to

op(w, - @) dw = -Norg Im<53> _dw (60)
zZo) W - ka
which is the same spectrum as for the zero drift case except that the scattered signal is
Doppler shifted by ka. This is what one would expect for very large Debye lengths
since the electrons then move independently of the ions, and the ions have no influence
over the electrons, which actually cause the scattering.

As the magnetic field strength Bo goes to zero, Pe = Pi =1 and the z, are again
given by equation (27) (with 0 replaced by 6, - X, In ze).

It must be emphasized that in order to legitimately use these expressions for the
backscattering cross section, one must be certain that the drift velocity of the electrons
is less than the critical velocity at which the two-stream instability sets in.

Numerical Evaluation of Cross Section

The differential backscattering cross section is evaluated in figure 11 for the case of
zero net electron drift velocity and for two drift velocities less than the critical drift
velocity which corresponds to Xe = 0.0055 for this particular set of parameters. This
figure shows that the spectrum changes from its symmetric shape for Xe = 0 to anun-
symmetric form when the electrons are drifting with respect to the ions. As the drift
velocity approaches the onset of instability, the spectrum becomes very sharply peaked
at a frequency corresponding to the ion acoustic wave in the plasma.

The total scattering cross section is enhanced when the electrons are drifting with
respect to the ions. As the electron drift velocity approaches the point at which the insta-
bility commences, the predicted total cross section becomes infinitely large. (In prac-
tice, the scattered power is limited by nonlinear effects.) This effect is shown in figure
12 for four values of the normalized collision frequency ;.
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Figure 11. - Normalized Thomson scattering cross section
as function of Doppler shift for various values of nor-
malized electron drift velocity. a= 170; normalized ion-
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Figure 12, - Total scattered power as function of normalized
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a = 12.7; normalized electron-neutral collision frequency,
o, 0.1 ¢y; electron to ion temperature ratio, 10; ion mass,
m;, 31 atomic mass units; C;=D;=2 Cy=Dy= L



SUMMARY OF RESULTS

The theory of Thomson scattering has been extended to include the effects of colli-
sions for scattering from a plasma with unequal electron and ion temperatures including
the influence of a constant magnetic field and electron drift. The theory presented here
is based on the two-fluid continuum equations for a plasma and should provide a good de-
scription when the wavelength of the probing wave is larger than the ion-neutral mean
free path.

When the ions and electrons are not at the same temperature, the total backscattered
power is shown to be dependent on the ion-neutral and electron-neutral collision frequen-
cies, as well as the magnitude and relative angle of the magnetic field if one is present.
For no magnetic field and electron to ion temperature ratio T e/Ti greater than or equal
to 10, the total backscattered power is shown to be substantially less than that of colli-
sionless calculations but always greater than a cross section that varies with Te/Ti as
(1 + Te/Ti)—l. For example, with a >> 1 (a = 7\0/4777\D where A is the wavelength of
the incident wave and Ap is the Debye length) Te/Ti = 20, and the ion-neutral mean free
path Ain ™ 1/5 Ay the normalized total backscattered power is about 1/7 of that predicted
for no collisions and about 2.%- times the value given by (1 + Te/Ti)'l.

As the electron-neutral and ion-neutral collision frequencies Ven and v, increase,
the scattered power approaches the (1 + Te/Ti)'1 curve, although it does not reach it
v, ~. Also, for T_/T; >5, a change in the ratio of the colli-

en’ “in

/.
ZJen’ Vm

the shape of the spectrum is essentially unchanged.

even in the limit v
sion frequencies can have a large effect on the total scattered power although

A constant magnetic field affects Thomson scattering only when the field is normal
to, or nearly normal to, the direction of propagation of the incident wave. For Te/Ti
in the common experimental range of 1to 10, the total scattered power is increased by
the magnetic field. In fact, the scattered power may increase with Te/Ti rather than
falling off in accord with the usual (1 + Te/Ti)'1 relation. For instance, with both the
ion gyroradius and the ion-neutral mean free path equal to 1/5 Ao with the angle between
the incident wave and the magnetic field B equal to 900, and with T e/ T; = 5, the total
backscattered power is almost five times that calculated for the field-free case. Increas-
ing the collision frequencies lessens the influence of the field and causes the scattered
power to become closer to the field-free case. In general, the total scattered power is a
function of the collision frequencies and the magnetic field strength except for the special
caseof T e =Ty when it is totally independent of both the collisions and the magnetic
field. When electrons are drifting with respect to the ions, only the component of the
drift velocity in the direction of the incident wave affects the backscattered signal. The
spectrum is no longer symmetric about the incident frequency (as it is for no drift). If
the Debye length is large compared with the wavelength of the incident wave, the only
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effect on the spectrum is a Doppler shift corresponding to the component of the drift
velocity in the direction of the incident wave. However, if the Debye length is small com-
pared with the wavelength, an instability of the ion acoustic wave develops as the drift
velocity reaches a certain critical value.

As the drift velocity increases, the spectrum of the backscattered signal develops a
sharp peak at a frequency shift (from the incident wave frequency) corresponding to the
weakly damped ion acoustic wave. The total scattered power is enhanced by a nonzero
drift velocity and, as the electron drift nears the critical velocity, becomes very much
greater than that calculated for a quiescent plasma. For example, with no magnetic
field, Te/Ti =10, @ >>1, and Ay = 1 A,, an electron drift velocity equal to 1/20 of the
electron thermal velocity causes the total backscattered power to be increased by a factor

of 14 over the zero-drift case.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, February 26, 1971,
120-26.
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APPENDIX A

SYMBOLS

see eq. (50)

see eq. (C13)

constant magnetic flux density
see eq. (B16)

constant of order 1 or 2
velocity of light

see eq. (C9)

electric flux density

constant of order 1 or 2
electric field intensity
electronic charge

applied force

see eq. (C12)

magnetic-field intensity
Planck's constant/27
generalized system response
imaginary part

J-1

current density

see eqgs. (40a) and (40b)

wave vector of scattering wave
wave vector of incident wave
wave vector of scattered wave
linear dimension of scattering volume
mass

ambient electron number density
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number density

index of refraction (for scattering wave)
see eq. (52)

traceless pressure tensor

scalar pressure

see eq. (39)

charge

real part

classical electron radius

see eq. (C10)

equilibrium temperature

temperature

see eq. (C11)

plasma sound speed

mean velocity

generalized force

electron drift velocity

energy in L3

see eq. (47)

iwe o/ e?

generalized admittance tensor
normalized impedance tensors (see eq. (B11))
normalized impedance function (see eq. (27))
1/(kxpy)

angle between rlf»o and Eo

see eq. (35b)

flux density

square root of electron to ion mass ratio
see eq. (C19)

fluctuating part of electron number density



fluctuating part of permittivity

Kronecker delta

permittivity of medium

permittivity of free space

coefficient of viscosity

scattering angle

normalized Doppler shift frequency (see eq. (29a))
Boltzmann's constant

electron Debye length

ion-neutral mean free path

thermal conductivity (with B,=0)

wavelength of incident wave

thermal conductivity (Eo #0)

electron to ion temperature ratio

effective collision frequency for momentum transfer
effective collision frequency for energy transfer
angle between incident electric field vector and k S
mass density

see eq. (C20)

differential backscattering cross section

total backscattering cross section

normalized cyclotron frequency (see eq. (29b))
normalized electron drift velocity (see eq. (57))
normalized collision frequency (see eq. (C7)
cyclotron frequency

Doppler shift frequency

plasma frequency

frequency of incident wave
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Subscripts:

e electrons

i ions

s either electrons or ions

SO zero-order quantity; either electrons or ions
n neutrals

i,j,k,l,m,n components of vectors or tensors
Superscripts:

* complex conjugate

t Hermitian conjugate
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APPENDIX B

BACKSCATTERING CROSS SECTION FOR ANISOTROPIC MEDIUM

A general tensor admittance function Y s is defined in the same manner as
Dougherty and Farley (ref. 3):
(B1)

s =

idae

s'fs

where F g isan applied force and Is is the resulting flux density. The rate of change
of energy in a volume L3 is

Q,

Wi, K, 2)

Applying the fluctuation-dissipation theorem (ref. 17) to the s species (for xT >> Hw)
gives the cross spectral density of the components of F g

kT -1 -1 *
<{Fis(w)F].s(w) ]> dw = 53 {[‘gs (w)]ji + [gs (w)]ij} dw (B3)

27L

This may be thought of as the spectrum of the stochastic forces that are driving the s
species when no interaction due to the electric fields is taken into account. The cross
spectral density is the Fourier transform of the cross correlation function and is defined
by

/ <IFiS(w)Fjs(w)|> 0T g = <Fis*(t)FjS(t + @ (B4)

With the inclusion of the force due to the electric field, the equation of motion for
the electrons (and ions) is

Ls =§s - (Fg + agE) (B5)
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Maxwell's equations provide another relation

Te 'Ei=§1 - (eE)
with
1-n2 0 0
iwe
Y= —2 o 1-n% o
o2
0 0 1

(B6)

(B7)

and where the coordinate system has been chosen so that the wave vector k lies along

the z axis.

Using equations (B5) and (B6) and assuming that the stochastic forces F e and F,

are uncorrelated lead to the cross spectral density of the electron fluctuations

{FFa [>] dw

e * e e LI 3
{rfrgl) dw=vyYin, [<|F3Fm D+ YiYoun

where

_ . -1
Y=Y, (Ye+X;+Y) - F+ %)

PARTVARD SIS #

2 1) QN
Normalized impedance tensors 7 g Z, and
~

iwN
o) Z—l

mYS: ~S

kZKTS
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%I are defined by

(B8)

(B9)

(B10)

(B11)



The differential backscattering cross section is proportional to the power spectrum
of the Fourier component of the electron number density fluctuations with wave vector
2k o (ref. 3).

o (@, - @) dw = L3r2 <]AN(250, ) lz> dw (B12)

The backscattering cross section is found by using equations (B7) to (B12) together
with the continuity equation for the electrons

agf+z-£e=o (B13)

to be
r2 1t
-1 t -
g.(w_ - w) dw Oe[Z -(B-BY)Y. Z ] dw (B14)
b*o 2riw L™ RR ~ 2z
where
7 -7 +(uz:lezsht (B15)
= re KL =1
and
_ p-1, -1 ,-1-1
B=Z-—— (uZ;"+27) (B16)
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APPENDIX C

CALCULATION OF IMPEDANCE TENSORS

In this appendix the normalized impedance tensors Z and Z; are calculated for
the electrons and ions considered separately; that is, W1thout 1nclud1ng the force due to
the self-consistent electric field. The impedance tensor %s for the s species is de-
fined by

iwN
= o Fg (C1)

gs ) ES 9
k KTS

where T is the flux density resulting from an applied force FS that is proportional to
iwt-ikz” ~
e .

The approach of Tanenbaum (ref. 11) is followed where the transport equations for
mass, momentum, and energy are used. For small amplitude disturbances in a weakly
ionized gas with the mean velocity of the neutral particles u n equal to 0, it is found to
first order in the fluctuating quantities, that

op
S _
= Pso¥  ¥s =0 (€2)
u., VP, E. q v-p
S, 5.8 uw xB)+ AS -y u (C3)
ot p m_ m_ S5 ~ Sn~8
SO S S SO
ap P,
s 5 Y¥so Fs 2 2
-2 - SA VT, = NOKvsn (Tg - Tgp) (C4)
ot 3 p,, ot 3

where Pgs dgr Mg, Pg; and TS are the mass density, charge, mass, pressure, and
temperature, respectively, for species s; B is a constant magnetic field; and Vsn

and Vsn = 2ms vsn/(m +m ) are, respectlvely, the effective collision frequencies for

momentum and energy transfer with the neutrals. The form of the traceless pressure

tensor and heat flow term developed by Chapman and Cowling (ref. 24) is used. For all
iwt-ikz

fluctuating quantities varying as e , the divergence of the traceless pressure ten-

sor gs may be written in the form

2 - u (Ch)

Ve B =kpeLs Y
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Normalized frequencies for the Doppler shift frequency, collision frequency, and
cyclotron frequency are defined by

1/2
b == < s ) (C8)
k ZKTS
1/2
Vg = o < s > (€
k 2KTS
1/2
Q m
by = — ( S> (C8)
k \2T,

Then T is a matrix whose elements are functions only of

Cg = ¥ <1;is> cos 3 (C9)
s
_ [ %s\ .
8y = ¥ I_P— sin 8 (C10)
s

where B is the angle between the incident wave vector }50 and the magnetic field B,

The upper sign is to be taken for the electrons, and the lower sign for the ions. The ten-
sor T is then given by
T =Gl A (C11)
~S ~S xS

where
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2 2
S 4s c.S
1+ S -Cg 1- S S S
1+4c§ 1+4cg 1+4c§
2
2sS 2s§ ch
G, =Jeg [1- 1+ -s_ |1+ (C12)
N 2 2 8 2
1+4cs 1+40S 1+4cS
i 0 25, 1
and
1 o 4 I
3 1+ 403
s
A =lo 1 2_7Ts (C13)
~ 3 1 4c2
+=2Cq
0o 0 4
L 3 J
The thermal conductivity is given by
2
¢
1+ <—E coszﬁ
11Ds
s = os . (C14)

1+ q—b-‘i
l‘bs

The coefficients for viscosity and thermal conductivity for charged particles in a weakly
ionized gas which appear in equations (C5) and (C14) are given by

p
Tog = — (C15)
D V%n
and
os _ s (C16)
4m Covgn
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where DS and C g are constants (of order 1 or 2) that depend on the interparticle force
law and the mass ratio between the electrons or ions and neutrals.

By using the mass and energy transport equations, we may write the momentum
equations in the same form as equation (C1) with the impedance tensors % s given by

h iznpses cos 8 0
igS —cys . .
%s = 5 gs + +21<;bsgs cos B hS i21¢ses sin 8 (C17)
(1
s7s
i 0 ¥2i¢ses sin B Ay + hs |
where
h, = 2i0_W, - 262 (C18)
s s”s s
1+1i Sw
30s
A =__ * =7 (C19)
s w
1+1i({=
Os
and
2
¢
5k2T |1 +<_s> cos2g
— )t S
Og = Vgp + - - ; 5T (C20)
s
2csvsnmS 1+<_>
"Ds

Now equation (C17) may be used to evaluate %e and %i in terms of plasma parameters.
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